Syllabus Information

Course Information

<table>
<thead>
<tr>
<th>Year</th>
<th>2017</th>
<th>School</th>
<th>Graduate School of Creative Science and Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title</td>
<td>Advanced Coastal Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instructor</td>
<td>SHIBAYAMA, Tomoya</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category</td>
<td>Lectures</td>
<td>Eligible Year</td>
<td>1st year and above</td>
</tr>
<tr>
<td>Classroom</td>
<td>01:51-11-12</td>
<td>Credits</td>
<td>2</td>
</tr>
<tr>
<td>Main Language</td>
<td>English</td>
<td>Campus</td>
<td>Nishi-Waseda (Former: Okubo)</td>
</tr>
<tr>
<td>Course Code</td>
<td>CSTX65ZL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Academic disciplines</td>
<td>Civil Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second Academic disciplines</td>
<td>Civil Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Third Academic disciplines</td>
<td>Hydraulic Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>Level of Master</td>
<td>Types of lesson</td>
<td>Lecture</td>
</tr>
</tbody>
</table>

Syllabus Information

Subtitle
Coastal Processes—Concepts in Coastal Engineering and Their Applications to Multifarious Environments

Course Outline

1. Introduction—Three examples of Japanese experience of coastal environment change due to construction works
2. Review of Fundamental Fluid Mechanics (1)
 - Brief history of fluid mechanics
 - Brief review of vector analysis
3. Review of Fundamental Fluid Mechanics (2)
 - Introduction of vector and scalar operators
 - The physical meaning of rotation.
 - Conservation laws of fluid mechanics
 - Mass conservation
 - Momentum conservation
 - Energy conservation
4. Review of Fundamental Fluid Mechanics (3)
 - Conservation laws of fluid mechanics
 - Irrotational flow of inviscid fluid
 - Velocity potential
 - Stream function
 - Complex potential
5. Basic Equations for Waves
6. Linear Wave Theories
7. Wave Induced Physical Phenomena (1)
 - Mass transport velocity
8. Wave Induced Physical Phenomena (2)
 - The bottom boundary Layer
9. Wave Induced Physical Phenomena (3)
 - Wave shoaling, Wave breaking, Wave reflection and transmission
10. Wave Induced Physical Phenomena (4)
 - Wave refraction, Wave diffraction, Numerical Simulation by using Mild Slope Equation
11. Wave Induced Physical Phenomena (5)
 - Calculation of wave-induced longshore current by using Boussinesq equations
12. Examination of breaker height formula
13. Surf zone Dynamics
14. Tsunamis and Storm Surges
15. Confirmation of study results

Textbooks

It is necessary to bring this book to the class (この教科書は授業を受けに必ず持参)。

Reference

Edx (MOOC) classes by Prof. Shibayama are available in the following web site for free.
https://www.edx.org/school/wasedax

Evaluation

<table>
<thead>
<tr>
<th>Evaluation</th>
<th>Rate</th>
<th>Evaluation Criteria</th>
</tr>
</thead>
</table>

file:///Users/YingMeng/Desktop/Course%20N@vi.htm
Rate Evaluation Criteria

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam</td>
<td>60%</td>
</tr>
<tr>
<td>Final Examination</td>
<td>60%</td>
</tr>
<tr>
<td>Papers</td>
<td>40%</td>
</tr>
<tr>
<td>2 Homework Problem Sets</td>
<td>20%</td>
</tr>
<tr>
<td>2 Reading Assignments</td>
<td>20%</td>
</tr>
</tbody>
</table>

Copyright © Waseda University 2006-2017. All rights reserved. Ver. 7.0.0